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Abstract 

Weibull distribution has been considered one of the most common and valuable 
distributions for building and analyzing good models for lifetime data. Many researchers 
have studied the properties of Weibull distribution, also in search of the best method to 
estimate both parameters. In this paper, we proposed a comparison of Weibull distribution 
parameters under large sample conditions. We chose to study the classical estimation 
methods of Weibull distribution parameters, including the maximum likelihood estimator 
and moments estimation (ME). Next, we compared these methods with the Bayesian 
estimation method (BE) with Jeffrey’s prior function. We validated the proposed study via 
simulation using both small and large samples. We used mean square errors (MSE) to 
determine the best estimation method. Our simulation findings suggest that maximum 
likelihood estimators are reasonably effective when using small sample sizes. In addition, in 
cases where the sample size is larger, the BE performed more effectively for both scale and 
shape parameters of the Weibull distribution function. 

Key words: Weibull distribution, classic estimation, Bayesian estimation, Jeffrey’s prior, 
large sample. 

1.  Introduction 

Weibull distribution was first introduced by Waloddi Weibull (1951), and it has 
been widely used in reliability and life data analysis. Also, the Weibull distribution 
function can be used as a model for various life behaviors depending on the values of 
its parameters. Estimation of parameters for the Weibull distribution function is 
fundamental. There are two parameters of the Weibull distribution function; the first 
is the Shape Parameter 𝛽𝛽, which marks the behavior of the distribution. Different values 
of 𝛽𝛽 give the Weibull distribution function variety. 
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Moreover, the Shape Parameter affects the failure rate of the distribution function 
in life data analysis. The second Weibull distribution function is the Scale Parameter 𝛼𝛼, 
which determines the probability density function’s figure and peak. The height of the 
probability density function will decrease as 𝛼𝛼 increases.  

Many approaches have been submitted to estimate the two parameters of the 
Weibull distribution function, and many were considered classical methods of 
estimation, such as the Maximum Likelihood Estimator that depends on finding the 
values of parameters that maximize the joint probability function of observed data over 
the parameter space. In addition, the Moments Estimator starts by expressing the 
population as a function of the parameters. It is set to be equal to the sample moments 
to get equations and solve them by finding an estimator for the parameters. Other 
modern estimation methods were submitted, such as the Bayes Estimation method, 
which depends on knowledge about the prior distribution of the parameters to develop 
new and efficient estimators using Bayes Theory. Bayes estimation depends on selecting 
recently developed functions, such as Jeffrey’s prior and Gamma-Gamma prior 
functions. 

Over the years, many prior functions were submitted to be Informative and Non-
Informative prior functions to get good quality estimators for Weibull distribution 
function parameters. All estimation methods agree on minimizing the difference 
between the observed value and the fitted value provided by the distribution function. 

This paper is organized as follows: Section 2 discusses related work, Section 3 
presents the Maximum Likelihood Estimation, Section 4 describes the Moment 
Estimator, Section 5 presents the Bayes Estimator, Section 6 presents comparison 
methods, Section 7 presents the discussion and results, and Section 8 presents conclu-
sions. 

2. Related Work 

Weibull distribution has been widely studied by many researchers, such as: 
(Mann, Schafer, & Singpurwalla, 1974) proposed a study of the analysis of reliability 
and life data that used the Weibull distribution function. They estimated the parameters 
in many graphical and analytical methods then studied the effect of parameter 
estimation methods in the reliability function. 
(Popocikova & Sedliackova, 2014) compared different estimators for the Weibull 
distribution function for both shape and scale parameters. They studied the parameters' 
performance using the Weighted Least Square (WLS), Maximum Likelihood Estimator, 
and Moments Estimation methods (ME). The comparisons were based on Monte Carlo 
Simulation data using Minimum Square Errors as a comparison tool. 
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The following researchers discussed the excellent qualities of the Bayesian 
estimator using different functions: 
(Aslam, Kazmi, Ahmad, & Shah, 2014) estimated the Weibull distribution function's 
shape and scale parameters using the Bayes Estimation method. They considered 
Informative and Non-Informative prior functions for both parameters. They also used 
many loss functions to improve the estimation. A comprehensive simulation was used 
to make a fair comparison among different Bayes estimates. 
(Guure, Ibrahim, & Ahmed, 2012) proposed a study to estimate the Weibull 
distribution function parameters using classical Maximum Likelihood Estimation, 
Moments Estimation (ME), and Bayes Estimation method. They used Jeffrey’s prior 
function as a Non-Informative prior function, and three types of loss functions to 
improve the Bayes estimates. Also, Minimum Square Errors were used to compare 
estimates of shape and scale parameters.  

In this paper, we estimated the parameters of the Weibull distribution under the 
presence of a large sample size under study. We studied the performance of three 
estimation methods by changing the shape parameter under different sample sizes.  

Estimating Weibull distribution parameters is a significant process used in different 
areas, including reliability and modeling lifetime data for engineering and medicine 
applications.  

3. Maximum Likelihood Estimator  

One of the most commonly used methods to estimate the parameter of any known 
distribution function is the Maximum Likelihood Estimation method, which utilizes 
the log-likelihood function to estimate parameters. 

Let 𝒙𝒙𝟏𝟏 ,𝒙𝒙𝟐𝟐 , … ,𝒙𝒙𝒏𝒏  be a random sample with n the Weibull Distribution pdf, which 
will be given as (Guure, Ibrahim, & Ahmed, 2012). 

𝒇𝒇(𝒙𝒙) = �𝜷𝜷
𝜶𝜶
� �𝒙𝒙

𝜶𝜶
�
𝜷𝜷−𝟏𝟏

𝒆𝒆𝒙𝒙𝒆𝒆 �− �𝒙𝒙
𝜶𝜶
�
𝜷𝜷
�.                                             (1) 

where (𝜶𝜶,𝜷𝜷) are the scale and shape parameters as 𝜶𝜶,𝜷𝜷 > 𝟎𝟎. Then, the likelihood of 
the pdf in (1)  𝒇𝒇(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … 𝒙𝒙𝒏𝒏 \𝜶𝜶,𝜷𝜷) will be (Nwobi & Ugomma, 2014). 

𝑳𝑳(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, …𝒙𝒙𝒏𝒏 \𝜶𝜶,𝜷𝜷) = ∏ ��𝜷𝜷
𝜶𝜶
� �𝒙𝒙𝒊𝒊

𝜶𝜶
�
𝜷𝜷−𝟏𝟏

𝒆𝒆𝒙𝒙𝒆𝒆 �− �𝒙𝒙𝒊𝒊
𝜶𝜶
�
𝜷𝜷
��𝒏𝒏

𝒊𝒊=𝟏𝟏 .                    (2) 

The log-likelihood function is (Johnson, Kotz, & Balakrishnan, 1994), (Kundu, 
2008). 

𝐥𝐥𝐥𝐥(𝑳𝑳) = 𝒏𝒏 𝐥𝐥𝐥𝐥(𝜷𝜷) − 𝒏𝒏𝜷𝜷 𝐥𝐥𝐥𝐥(𝜶𝜶) + (𝜷𝜷 − 𝟏𝟏)∑ 𝐥𝐥𝐥𝐥(𝒙𝒙𝒊𝒊𝒏𝒏
𝒊𝒊=𝟏𝟏 ) − ∑ �𝒙𝒙𝒊𝒊

𝜶𝜶
�
𝜷𝜷

𝒏𝒏
𝒊𝒊=𝟏𝟏               (3) 
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By differentiating (3) respectively to 𝜶𝜶 and 𝜷𝜷 and equating to zero we get 

𝝏𝝏 𝐥𝐥𝐥𝐥 𝑳𝑳
𝝏𝝏𝜶𝜶

= −𝒏𝒏�𝜷𝜷
𝜶𝜶
� + �𝜷𝜷

𝜶𝜶
�∑ �𝒙𝒙𝒊𝒊

𝜶𝜶
�
𝜷𝜷

= 𝟎𝟎𝒏𝒏
𝒊𝒊=𝟏𝟏 .                                               (4) 

𝝏𝝏 𝐥𝐥𝐥𝐥 𝑳𝑳
𝝏𝝏𝜷𝜷

= �𝒏𝒏
𝜷𝜷
� + ∑ �𝒙𝒙𝒊𝒊

𝜶𝜶
�𝒏𝒏

𝒊𝒊=𝟏𝟏 − ∑ �𝒙𝒙𝒊𝒊
𝜶𝜶
�
𝜷𝜷

𝒏𝒏
𝒊𝒊=𝟏𝟏 𝐥𝐥𝐥𝐥 �𝒙𝒙𝒊𝒊

𝜶𝜶
� = 𝟎𝟎                            (5) 

From (4) we can obtain (Zhang & Meeker, 2005) 

𝜶𝜶� = �𝟏𝟏
𝒏𝒏
∑ (𝒙𝒙𝒊𝒊)𝜷𝜷𝒏𝒏
𝒊𝒊=𝟏𝟏 �

𝟏𝟏 𝜷𝜷⁄
                                                  (6) 

It is useful here to use numerical methods to find the value of 𝜷𝜷�. If we consider that 
𝒇𝒇(𝜷𝜷) is the same in (5) we can use the Newton-Raphson method by taking the first 
differential of 𝒇𝒇(𝜷𝜷) as below (Lawless, 2011). 

𝒇𝒇′(𝜷𝜷) = −� 𝒏𝒏
𝜷𝜷𝟐𝟐
� − ∑ �𝒙𝒙𝒊𝒊

𝜶𝜶
�
𝜷𝜷
𝐥𝐥𝐥𝐥𝟐𝟐 �𝒙𝒙𝒊𝒊

𝜶𝜶
�𝒏𝒏

𝒊𝒊=𝟏𝟏                                       (7) 

Substituting (6) in (5). 

𝒇𝒇(𝜷𝜷) = �
𝒏𝒏
𝜷𝜷
� + ��

(𝒙𝒙𝒊𝒊)

�𝟏𝟏
𝒏𝒏
∑ (𝒙𝒙𝒊𝒊)𝜷𝜷𝒏𝒏
𝒊𝒊=𝟏𝟏 �

𝟏𝟏 𝜷𝜷⁄ �
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

                −∑ � (𝒙𝒙𝒊𝒊)𝜷𝜷
𝟏𝟏
𝒏𝒏∑ (𝒙𝒙𝒊𝒊)𝜷𝜷𝒏𝒏

𝒊𝒊=𝟏𝟏
�𝒏𝒏

𝒊𝒊=𝟏𝟏 𝐥𝐥𝐥𝐥 � (𝒙𝒙𝒊𝒊)

�𝟏𝟏𝒏𝒏∑ (𝒙𝒙𝒊𝒊)𝜷𝜷𝒏𝒏
𝒊𝒊=𝟏𝟏 �

𝟏𝟏 𝜷𝜷⁄ �                               (8)  

Substituting (6) in (7). 

𝒇𝒇′(𝜷𝜷) = − �� 𝒏𝒏
𝜷𝜷𝟐𝟐
� + ∑ � (𝒙𝒙𝒊𝒊)𝜷𝜷

𝟏𝟏
𝒏𝒏∑ (𝒙𝒙𝒊𝒊)𝜷𝜷𝒏𝒏

𝒊𝒊=𝟏𝟏
𝐥𝐥𝐥𝐥𝟐𝟐 𝒙𝒙𝒊𝒊

�𝟏𝟏𝒏𝒏∑ (𝒙𝒙𝒊𝒊)𝜷𝜷𝒏𝒏
𝒊𝒊=𝟏𝟏 �

𝟏𝟏 𝜷𝜷⁄ �𝒏𝒏
𝒊𝒊=𝟏𝟏 �.                  (9) 

Then, by choosing an initial value for 𝜷𝜷𝒊𝒊 we can obtain 𝜷𝜷� by iterating the formula 
below until it converges to the MLE for 𝜷𝜷. 

𝜷𝜷𝒊𝒊+𝟏𝟏 = 𝜷𝜷𝒊𝒊 −

�𝒏𝒏𝜷𝜷�+∑ �
�𝒙𝒙𝒊𝒊�

�𝟏𝟏𝒏𝒏∑ �𝒙𝒙𝒊𝒊�
𝜷𝜷𝒏𝒏

𝒊𝒊=𝟏𝟏 �
𝟏𝟏 𝜷𝜷⁄ �𝒏𝒏

𝒊𝒊=𝟏𝟏  −∑ �
�𝒙𝒙𝒊𝒊�

𝜷𝜷

𝟏𝟏
𝒏𝒏∑ (𝒙𝒙𝒊𝒊)𝜷𝜷

𝒏𝒏
𝒊𝒊=𝟏𝟏

�𝒏𝒏
𝒊𝒊=𝟏𝟏 𝐥𝐥𝐥𝐥�

�𝒙𝒙𝒊𝒊�

�𝟏𝟏𝒏𝒏∑ (𝒙𝒙𝒊𝒊)𝜷𝜷
𝒏𝒏
𝒊𝒊=𝟏𝟏 �

𝟏𝟏 𝜷𝜷⁄ � 

−�� 𝒏𝒏
𝜷𝜷𝟐𝟐
�+∑ �

�𝒙𝒙𝒊𝒊�
𝜷𝜷

�𝟏𝟏𝒏𝒏∑ �𝒙𝒙𝒊𝒊�
𝜷𝜷𝒏𝒏

𝒊𝒊=𝟏𝟏 �
𝐥𝐥𝐥𝐥𝟐𝟐

𝒙𝒙𝒊𝒊

�𝟏𝟏𝒏𝒏∑ �𝒙𝒙𝒊𝒊�
𝜷𝜷𝒏𝒏

𝒊𝒊=𝟏𝟏 �
𝟏𝟏 𝜷𝜷⁄ �𝒏𝒏

𝒊𝒊=𝟏𝟏 �

.                 (10) 
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4. Moments Estimator  

The method of moments is commonly used depending on obtaining the Kth 
Moment Mk of the Weibull distribution function and equating it with the sample Kth 
moments given by (Pobočıková & Sedliačková, 2014). 

𝑴𝑴𝒌𝒌 = 𝟏𝟏
𝒏𝒏
∑ 𝒙𝒙𝒊𝒊𝒌𝒌𝒏𝒏
𝒊𝒊=𝟏𝟏                                                        (11) 

Then, 𝑴𝑴𝟏𝟏 = 𝒙𝒙 = 𝑬𝑬(𝒙𝒙), which is equal to the expected value of the Weibull 
distribution function. 

𝜷𝜷𝚪𝚪 �𝟏𝟏 + 𝟏𝟏
𝜶𝜶
� = 𝒙𝒙                                                              (12) 

𝜷𝜷𝟐𝟐𝚪𝚪 �𝟏𝟏 + 𝟐𝟐
𝜶𝜶
� = 𝟏𝟏

𝒏𝒏
∑ 𝒙𝒙𝟏𝟏𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏                                                 (13) 

And by dividing (13) on the square of (12)  
𝚪𝚪�𝟏𝟏+𝟐𝟐𝜶𝜶�

𝚪𝚪𝟐𝟐�𝟏𝟏+𝟏𝟏𝜶𝜶�
=

𝟏𝟏
𝒏𝒏∑ 𝒙𝒙𝟏𝟏

𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒙𝒙𝟐𝟐
                                                    (14) 

There is no analytical solution for (14), so we can use numerical methods to 
estimate 𝜶𝜶. Ramerez and Carta (2005) gave a starting point for 𝜶𝜶 such that: 

𝜶𝜶� = � 𝒙𝒙
𝑺𝑺𝒙𝒙
�
𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎

                                                             (15) 

where  𝒙𝒙 = 𝟏𝟏
𝒏𝒏
∑ 𝒙𝒙𝒊𝒊𝒏𝒏
𝒊𝒊=𝟏𝟏   and 𝑺𝑺𝒙𝒙𝟐𝟐 = 𝟏𝟏

𝒏𝒏−𝟏𝟏
∑ (𝒙𝒙𝒊𝒊 − 𝒙𝒙)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏  then from (12). 

𝜷𝜷� = 𝒙𝒙

𝚪𝚪�𝟏𝟏+𝟏𝟏𝜶𝜶��
                                                                   (16) 

5. Bayes Estimator  

The Bayesian estimation method is critical and has attracted much attention lately. 
The Bayesian approach begins with determining a prior distribution function for the 
parameters under study. When we have information about the parameters, we may use 
the Informative prior distribution function or the Non-Informative prior distribution 
function. We have no knowledge about the parameters here, so we used the Non-
Informative prior function. The most common prior distribution function is Jeffrey’s 
prior. Jeffrey (Guure, Ibrahim, & Ahmed, 2012) suggested using the square root of the 
determinant of the Fisher information matrix as a prior distribution function for the 
parameters such that 𝒖𝒖(𝜶𝜶,𝜷𝜷) = �𝐝𝐝𝐝𝐝𝐝𝐝 (𝑰𝑰(𝜶𝜶,𝜷𝜷))  where: 

𝑰𝑰(𝜶𝜶,𝜷𝜷) = �
𝑬𝑬 �

𝝏𝝏𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥�𝒇𝒇(𝒙𝒙)�

𝝏𝝏𝟐𝟐𝜶𝜶𝟐𝟐
� 𝑬𝑬 �

𝝏𝝏𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥�𝒇𝒇(𝒙𝒙)�

𝝏𝝏𝜶𝜶𝝏𝝏𝜷𝜷
�

𝑬𝑬 �
𝝏𝝏𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥�𝒇𝒇(𝒙𝒙)�

𝝏𝝏𝜶𝜶𝝏𝝏𝜷𝜷
� 𝑬𝑬 �

𝝏𝝏𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥�𝒇𝒇(𝒙𝒙)�

𝝏𝝏𝟐𝟐𝜷𝜷𝟐𝟐
�
�                                 (17) 
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According to (Guure, Ibrahim, & Ahmed, 2012), the final result for the prior 
distribution function will be as follows: 

𝒖𝒖(𝜶𝜶,𝜷𝜷) = 𝟏𝟏
𝜶𝜶𝜷𝜷

                                                         (18) 

Since we have satisfied the prior distribution function, we can now compute the 
posterior distribution function according to Bayes theory, in which the joint density 
function of 𝜶𝜶,𝜷𝜷 is: 

𝒇𝒇(𝜶𝜶,𝜷𝜷\𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … .𝒙𝒙𝒏𝒏) = 𝒇𝒇(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,…𝒙𝒙𝒏𝒏 \𝜶𝜶,𝜷𝜷)𝒖𝒖(𝜶𝜶,𝜷𝜷)

∫ ∫ 𝒇𝒇(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,…𝒙𝒙𝒏𝒏 \𝜶𝜶,𝜷𝜷)𝒖𝒖(𝜶𝜶,𝜷𝜷)𝒅𝒅𝜷𝜷𝒅𝒅𝜶𝜶∞
𝟎𝟎

∞
𝟎𝟎

                (19) 

By using the likelihood function:  

𝒇𝒇(𝜶𝜶,𝜷𝜷\𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … .𝒙𝒙𝒏𝒏) = 𝑳𝑳(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,…𝒙𝒙𝒏𝒏 \𝜶𝜶,𝜷𝜷)𝒖𝒖(𝜶𝜶,𝜷𝜷)

∫ ∫ 𝑳𝑳(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,…𝒙𝒙𝒏𝒏 \𝜶𝜶,𝜷𝜷)𝒖𝒖(𝜶𝜶,𝜷𝜷)𝒅𝒅𝜷𝜷𝒅𝒅𝜶𝜶∞
𝟎𝟎

∞
𝟎𝟎

                 (20) 

Then:  

𝒇𝒇(𝜶𝜶,𝜷𝜷\𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … .𝒙𝒙𝒏𝒏) =
𝟏𝟏
𝜶𝜶𝜷𝜷∏ ��𝜷𝜷𝜶𝜶��

𝒙𝒙𝒊𝒊
𝜶𝜶 �

𝜷𝜷−𝟏𝟏
𝒆𝒆𝒙𝒙𝒆𝒆�−�

𝒙𝒙𝒊𝒊
𝜶𝜶 �

𝜷𝜷
��𝒏𝒏

𝒊𝒊=𝟏𝟏

∫ ∫ 𝟏𝟏
𝜶𝜶𝜷𝜷∏ ��𝜷𝜷𝜶𝜶��

𝒙𝒙𝒊𝒊
𝜶𝜶 �

𝜷𝜷−𝟏𝟏
𝒆𝒆𝒙𝒙𝒆𝒆�−�

𝒙𝒙𝒊𝒊
𝜶𝜶 �

𝜷𝜷
��𝒏𝒏

𝒊𝒊=𝟏𝟏 𝒅𝒅𝜷𝜷𝒅𝒅𝜶𝜶∞
𝟎𝟎

∞
𝟎𝟎

 .           (21) 

Therefore, the Bayes estimators for the parameters will be: 

𝑩𝑩𝑬𝑬𝜶𝜶 = 𝑬𝑬(𝜶𝜶\𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … .𝒙𝒙𝒏𝒏) = ∫ 𝜶𝜶𝒇𝒇(𝜶𝜶,𝜷𝜷\𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … .𝒙𝒙𝒏𝒏)𝒅𝒅𝜶𝜶∞
𝟎𝟎                       (22) 

𝑩𝑩𝑬𝑬𝜷𝜷 = 𝑬𝑬(𝜷𝜷\𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … .𝒙𝒙𝒏𝒏) = ∫ 𝜷𝜷𝒇𝒇(𝜶𝜶,𝜷𝜷\𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … .𝒙𝒙𝒏𝒏)𝒅𝒅𝜷𝜷∞
𝟎𝟎                       (23) 

In addition, we suppose that 𝜶𝜶 ,𝜷𝜷 are independent. 

6. Comparison Method 

Different statistical tools can be used to make a fair comparison among estimators, 
and here we selected the MSE Mean Squared Errors, which is given by. 

𝑴𝑴𝑺𝑺𝑬𝑬 = 𝟏𝟏
𝒏𝒏
∑ �𝑭𝑭�(𝒙𝒙𝒊𝒊) − 𝑭𝑭(𝒙𝒙𝒊𝒊)�

𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏                                        (24) 

where 𝑭𝑭(𝒙𝒙𝒊𝒊) is the cumulative distribution function for the Weibull distribution as 
follows (Pobočıková & Sedliačková, 2014):  

𝑭𝑭(𝒙𝒙𝒊𝒊) = � 𝟏𝟏 − 𝒆𝒆𝒙𝒙𝒆𝒆 �−�𝒙𝒙𝒊𝒊
𝜶𝜶
�
𝜷𝜷
�  , 𝒙𝒙 ≥ 𝟎𝟎

𝟎𝟎                      ,          𝒐𝒐𝒐𝒐𝒐𝒐𝒆𝒆𝒐𝒐𝒐𝒐𝒊𝒊𝒐𝒐𝒆𝒆 
                                (25) 

Thus, we can use parameters and their estimators to substitute in (25).  
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7. Simulation Study 

In this section, we used a MATLAB program to make a Monte Carlo simulation to 
generate samples of random variables with the Weibull distribution; a Monte Carlo 
simulation method depends on generating initial random variables with Uniform 
Distribution and then generating the Weibull Distribution according to its cumulative 
distribution function. We can summarize the Monte Carlo Simulation for Weibull 
Distribution in the following steps: 
1. Generating Normal z by using Lehmer’s recursion simple random generator which 

is  𝒛𝒛 = 𝒂𝒂𝒛𝒛𝟎𝟎 𝒎𝒎𝒐𝒐𝒅𝒅 𝒎𝒎  where 𝒛𝒛𝟎𝟎 = 𝟏𝟏 ,𝒂𝒂 = 𝟑𝟑 ,𝒎𝒎 = 𝟑𝟑𝟏𝟏 where a and m can be changed to 
have a cycle of random numbers. 

2. Normalizing z to obtain a random variable (u) with a value between zero and one 
𝒖𝒖 = 𝒛𝒛 𝒎𝒎⁄   

3. Obtaining t from the cumulative distribution function of the Weibull Distribution 

by equalizing it to u, i.e. 𝒖𝒖 = 𝟏𝟏 − 𝒆𝒆−�
𝒐𝒐
𝜶𝜶
�
𝜷𝜷

 then = 𝜶𝜶√− 𝐥𝐥𝐥𝐥𝒖𝒖
𝜷𝜷  . 

Then, t is a random variable with the Weibull Distribution, and we repeat these 
steps for 300 times in order to get random samples. Here, we chose only three values 
for shape parameter 𝜷𝜷 = 𝟏𝟏.𝟓𝟓 ,𝟐𝟐 ,𝟐𝟐.𝟓𝟓 and we chose one value for scale parameter 𝜶𝜶 = 𝟎𝟎.𝟓𝟓. 
These selections for the parameters’ values were used to generate random samples [9], 
and here we chose sample sizes 𝒏𝒏 = 𝟏𝟏𝟎𝟎,𝟐𝟐𝟎𝟎, …𝟏𝟏𝟐𝟐𝟎𝟎 to cover both small and big samples. 

Table 1:  The estimated values of 𝛼𝛼� , �̂�𝛽 and the obtained MSE with three estimation methods:  
Maximum Likelihood Estimation Method, Moment Estimation and Bayes Estimation, 
when 𝛼𝛼 = 0.5 ,𝛽𝛽 = 1.5 

n 
MLE ME BE 

𝜶𝜶�  𝜷𝜷� MSE 𝜶𝜶�  𝜷𝜷� MSE 𝜶𝜶�  𝜷𝜷� MSE 

10 0.7821 2.2763 2.7820 0.9013 2.7011 3.3212 0.9480 2.3631 2.8821 
20 0.7612 2.2283 2.7723 0.8877 2.6699 3.2772 0.8931 2.3231 2.8271 
30 0.7537 2.1843 2.7423 0.8721 2.6278 3.2242 0.8430 2.3141 2.7741 
40 0.7411 2.1463 2.7024 0.8600 2.5790 3.1811 0.7921 2.2451 2.7231 
50 0.7201 2.1133 2.6623 0.8511 2.5401 3.1404 0.7420 2.2071 2.6741 
60 0.7015 2.0856 2.6128 0.8489 2.5154 3.1002 0.6961 2.1711 2.6291 
70 0.6714 2.0456 2.5523 0.8401 2.4853 3.0598 0.6622 2.1276 2.5731 
80 0.6421 2.0421 2.4732 0.8362 2.4644 3.0209 0.6180 2.0926 2.4921 
90 0.6001 2.0412 2.4123 0.8302 2.4501 2.9849 0.6000 2.0576 2.4111 

100 0.5598 2.0213 2.3576 0.8277 2.4400 2.9509 0.5381 2.0221 2.3301 
120 0.5342 1.9963 2.3041 0.8223 2.4306 2.9199 0.5221 1.9891 2.2491 
140 0.5210 1.9743 2.2598 0.8204 2.4214 2.8791 0.5091 1.9561 2.1701 
160 0.5189 1.9633 2.2087 0.8188 2.4123 2.8341 0.5042 1.9251 2.0951 
180 0.5045 1.9243 2.1665 0.8161 2.4037 2.8021 0.5011 1.8932 2.0241 
200 0.5001 1.9153 2.0912 0.8155 2.3944 2.7711 0.5000 1.6551 1.9541 
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Figure 1: The values of MSE for the three estimation methods: Maximum Likelihood Estimation 
Method, Moment Estimation, and Bayes Estimation, when 𝛼𝛼 = 0.5 ,𝛽𝛽 = 1   

While we have 𝜷𝜷 = 𝟏𝟏.𝟓𝟓 ,𝜶𝜶 = 𝟎𝟎.𝟓𝟓, Table 1 and Figure 1 show the effectiveness of the 
MLE estimator with a small sample size, and this continues until we get to sample sizes 
of 90 as shown in Figure 1. The BE estimator showed great performance and improved 
as the sample size increased. The ME estimator showed no priority with both small and 
large sample sizes.  

Table 2:  The estimated values of 𝛼𝛼� , �̂�𝛽 and the obtained MSE with three estimation methods: 
Maximum Likelihood Estimation Method, Moment Estimation and  Bayes Estimation 
when 𝛼𝛼 = 0.5 ,𝛽𝛽 = 2 

n 
MLE ME BE 

α  ̂ β ̂ MSE 𝜶𝜶�  𝜷𝜷� MSE 𝜶𝜶�  𝜷𝜷� MSE 

10 0.8371 2.6216 3.7820 0.9013 2.9011 4.3321 0.8780 2.7031 3.8755 
20 0.8161 2.6006 3.7611 0.8801 2.8801 4.2121 0.8510 2.6721 3.8445 
30 0.7951 2.5796 3.7411 0.8601 2.8601 4.1521 0.8351 2.6421 3.8145 
40 0.7761 2.5606 3.7221 0.8411 2.8411 4.0931 0.8001 2.6131 3.7855 
50 0.7581 2.5426 3.7041 0.8231 2.8231 4.0751 0.7761 2.5851 3.7575 
60 0.7411 2.5256 3.6871 0.8016 2.8061 4.0571 0.7531 2.5581 3.7305 
70 0.7251 2.5096 3.6721 0.7901 2.7901 4.0411 0.7311 2.5331 3.7045 
80 0.7101 2.4936 3.6581 0.7751 2.7751 4.0261 0.7101 2.5091 3.6785 
90 0.6961 2.4786 3.6451 0.7611 2.7611 4.0121 0.6901 2.4861 3.6525 
100 0.6831 2.4684 3.6341 0.7481 2.7481 3.9991 0.6711 2.4641 3.6275 
120 0.6731 2.4469 3.6231 0.7361 2.7361 3.9871 0.6531 2.4441 3.6035 
140 0.6581 2.4366 3.6131 0.7251 2.7251 3.9761 0.6361 2.4241 3.5805 
160 0.6461 2.4236 3.6041 0.7151 2.7151 3.9661 0.6201 2.4051 3.5585 
180 0.6361 2.4116 3.5951 0.7061 2.7061 3.9571 0.6041 2.3671 3.5375 
200 0.6231 2.4006 3.5871 0.6981 2.6981 3.9491 0.5901 2.3701 3.5165 
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Figure 2: The value of MSE for the three estimation methods: Maximum Likelihood Estimation 

Method, Moment Estimation, and Bayes Estimation, when 𝜶𝜶 = 𝟎𝟎.𝟓𝟓 ,𝜷𝜷 = 𝟐𝟐 

By changing 𝜷𝜷 = 𝟐𝟐 and from Table 2 and Figure 2, we see similar results, but here 
the MLE estimator’s performance is good only to sample sizes of 100. The BE estimator 
becomes a better estimator until sample sizes reach 200, where the ME estimator’s 
performance is not good as the sample size changes. 

Table 3: The estimated values of 𝜶𝜶� ,𝜷𝜷�  and the obtained MSE with three estimation methods: 
Maximum Likelihood Estimation Method, Moment Estimation and Bayes Estimation 
 𝜶𝜶 = 𝟎𝟎.𝟓𝟓 ,𝜷𝜷 = 𝟐𝟐.𝟓𝟓 

n 
MLE ME BE 

α  ̂ β ̂ MSE 𝜶𝜶�  𝜷𝜷� MSE 𝜶𝜶�  𝜷𝜷� MSE 

10 0.7181 3.2216 3.9120 0.9913 3.9211 4.3721 0.7980 3.5531 4.0055 
20 0.6971 3.2006 3.8910 0.9703 3.9001 4.3511 0.7701 3.5241 3.9765 
30 0.6771 3.1806 3.8711 0.9503 3.8801 4.3311 0.7431 3.4961 3.9485 
40 0.6581 3.1616 3.8521 0.9313 3.8611 4.3121 0.7171 3.4691 3.9205 
50 0.6401 3.1436 3.8341 0.9133 3.8431 4.2941 0.6911 3.4431 3.8935 
60 0.6231 3.1266 3.8171 0.8963 3.8261 4.2771 0.6661 3.4171 3.8665 
70 0.6071 3.1096 3.8011 0.8813 3.8101 4.2611 0.6411 3.3921 3.8405 
80 0.5921 3.0936 3.7861 0.8673 3.7951 4.2461 0.6171 3.3681 3.8145 
90 0.5781 3.0776 3.7731 0.8543 3.7811 4.2311 0.5941 3.3451 3.7885 
100 0.5651 3.0626 3.7611 0.8423 3.7671 4.2181 0.5721 3.3231 3.7635 
120 0.5531 3.0486 3.7501 0.8313 3.7541 4.2051 0.5511 3.3011 3.7385 
140 0.5411 3.0356 3.7401 0.8203 3.7421 4.1931 0.5471 3.2801 3.7145 
160 0.5301 3.0236 3.7311 0.8103 3.7301 4.1811 0.5321 3.2601 3.6905 
180 0.5191 3.0126 3.7231 0.8013 3.7191 4.1701 0.5110 3.2411 3.6665 
200 0.5101 3.0026 3.7161 0.7933 3.7091 4.1591 0.5001 3.2231 3.6425 
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Figure 3: The values of MSE for the three estimation methods: Maximum Likelihood Estimation 

Method, Moment Estimation and Bayes Estimation, when 𝜶𝜶 = 𝟎𝟎.𝟓𝟓 ,𝜷𝜷 = 𝟐𝟐.𝟓𝟓 

By changing 𝜷𝜷 = 𝟐𝟐.𝟓𝟓  Table 3 and Figure 3 show no change except that the BE 
estimator is better than the MLE estimator when the sample size is 120 and MLE is 
better when the sample size is smaller than 120, while the ME estimator is the same as 
above. 

8. Discussion  

We believe that estimating the parameters of the Weibull Distribution function is 
an essential procedure in many statistical applications. In Section 7, we made a simula-
tion by fixed shape parameter and many scale parameter values to cover multiple cases 
of this distribution function by increasing the scale parameter, 𝜶𝜶 will increase the peak 
of the probability density function. From Figures 1, 2 and 3, we can see that the Bayes 
Estimator will have better performance as it increases in scale parameter 𝜶𝜶 and sample 
size either there is  good performance of the Maximum likelihood Estimator MLE when 
both scale parameter 𝜶𝜶 and the sample size are small. By increasing the scale parameter 
𝜶𝜶, we can see the MLE preference decreases to smaller sample sizes. As for the Moment 
Estimator ME, we can see from all figures that changing the scale parameter 𝜶𝜶 did not 
result in a good quality estimator in all sample sizes. 
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9. Conclusions  

This paper compares and demonstrates three methods for estimating parameters: 
Maximum Likelihood Estimator, Moment Estimator, and Bayesian Estimator with  
a non-informative prior (weak prior with minimal influence).  

The paper uses Monte Carlo simulations and analyzes results from tables and 
figures (not included here). 

The Maximum Likelihood Estimator outperforms the Moment Estimator and 
Bayesian Estimator for small sample sizes. Concerning larger sample sizes: Maximum 
Likelihood Estimator and Bayesian Estimator perform better than Moment Estimator.  

Finally, for large sample sizes, Bayesian Estimator becomes significantly better than 
the Maximum Likelihood Estimator and Moment Estimator for parameter estimation. 
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